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OPTIMAL CONTROL OF THE HEL BEAM

BY

J. Eldon Steelman

ABSTRACT

Optimal control of the deformable mirror in a High Energy Laser was

used to reduce the effects of atmospheric turbulence. The performance

characteristics of an optical detector with one or four sub-apertures were

estimated. These estimated performance characteristics were then used to

determine the regime where four sub-apertures gave better performance

than one sub-aperture for no time delay and for a one millisecond time

delay.
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I. INTRODUCTION:

Optimal control of the deformable mirror in a High Energy

Laser (LEL) (see Figure 1) is used to offset the turbulence in the

atmosphere. This research effort seeks the best control system for the

HEL as a function of the measurement statistics and the number of detector

sub-apertures. The number of sub-apertures is important because more

sub-apertures allow the estimation of higher order optical effects and

the potential for better control. However, increasing the number of

sub-aperture increases the measurement variance.

The primary tool used in this determination was computer modeling.

Kleinman's routines (References I through 5) were used to determine the

optimal continuous control and the steady-state gain of a continuous

Kalman estimator. Kleinman's routines were also used to find the overall

system covariance matrix.

II. OBJECTIVES OF THE RESEARCH EFFORT:

The objective of this project was to determine the system

for the deformable mirror which minimized the effects of atmospheric

turbulence. The reduction in atmospheric turbulence effects was found

as a function of measurement statistics and number of sub-apertures.

The reduction was found for the first five optical modes with time delays

of 0 and I msec. A basic assumption was that each optical mode could be

estimated separately and linearly.

III. ATMOSPHERIC TURBULENCE:

The distortion induced in the laser beam by atmospheric turbulence

can be described in terms of its effect on the various optical modes (tilt,

focus, astigmatism, etc.). The effect on each optical mode can be modeled

by a three state variable model driven by a Gaussian random variable

(References 6 and 7).
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Let x1  vx = random effect on optical mode

x 2  = turbulence model state

x 3  = turbulence model state

Then the state model is

1 = - a x1 + ax (1)

2 -b x2 + b x3  (2)

3 =-c x3 + vt  (3)
where vt is white noise with covariance

E {v (t)v (t + T)} = k6(T) (4)

Values of k, a, b, and c for the first five optical modes are given in

Table I (Reference 7).

Table I. Parameters for Turbulence Model

Mode Name k a b c

x Tilt 2.6 x 10- 7  47.10 2200 2200

y Tip 2.4 x 10- 7  47.10 2200 2200

2 y2 R2/2 Focus 3.3 x 10-8  94.20 3350 3350

2 -2 Astig-I 5.4 x 10- 8  41.80 2576 2576

xy (exact) Astig-2 6.0 x 10 4.710 73.30 2932

xy (approx.) 5.65 x 10-6 73.30 2932 3 x 104

NOTE: Mode xy (exact) has a zero at .0523 radians/sec

The steady-state output covariance of the system described by equations

(I) through (4) may be found by solving the linear variance equation

(reference 9)

A X+ ATX + Q = 0 (5)

where

A is the 3 by 3 system matrix from equations 1 through 3

Q is a 3 by 3 matrix with q33 = k
the only non-zero term

X is the covariance matrix of [xI x2 x31
T

3



The resultant entries of x are

x X x ab(a+b+c)k (6)
1 12 =x21 2(a+b)(a+c)(b+c)c

x13  x3 1 = ab k (7)
2(bc)(a+c)c

x x X = b k (8)
22 23 32 2(b+c) c

x = 3 k (9)
2c

To avoid a special program for mode xy (astigmatism-2), mode xy was

modelled by the approximate model shown as the last line of Table I. This

approximate model resulted from two approximations. First, the zero

at .0523 was cancelled by the pole at 4.71. (This cancellation multiplied

k by 4.71/.0523). Secondly, the linear variance equation for the resulting

2 pole system was solved to yield
xf a k' (10)
11 2(a+b)b

Finally, an effective k was chosen so that the variance of xI from (6) and

the variance from (10) were identical when a remote third pole (c-10b)

was included.

The effect of atmospheric turbulence upon the intensity at the target

is a function of Zernike residual errors (reference 11 and 13). These

residual errors and differences are tabulated in Table II.

Table II. Zernike Residual Errors and Strengths

Mode A.(=o. 2) Difference
1.03 1 (Strength of aberration)

Tilt .448
0.582

Tip .448
0.134

Focus .023
0.111

Astig-1 .023
0.088

Astig-2 .023
.0655/

NOTE: All quantities must be multiplied by (D/ro)

4



The normalized, on-axis for field irradiance, Irel, is usually found

from the Strehl approximation

Irel = exp (-a2)

The Strehl approximation is not valid for large values of a2 . Thus, the

figure of merit used in this research effort is the normalized phase

variance a2 /a0
2 where 0

2 = 1.03 (D/r0 )
5 /3 . For example, if tilt

and tip could be completely corrected (or removed) the normalized

variance would be 0.134/1.03.
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IV. MIRROR AND CONTROL SYSTEM MODEL:

The mirror tilt and control system are represented by three state
variables.

Let x4  = mirror tilt 
(11)

x5  = mirror tilt rate (12)

x6  = integral of error (xI - x4) (13)

Finally, the mirror drive is a force driver such that

x = x5  = u (14)

The complete tilt system model is

--a a 0 0 0 0 x1  0. 0

x2 0 -b b 0 0 0 x2  0 0
S 0 00-c 0 0 Ox 0 u + v (15)

x c 0 0 0 x3 +t
x 0 0 0 1 0 x4  0 0

0X50 0 0 0 0 0] x 1j 0
6 L 1 1 0 0 X600

The covariance matrix for the driving noise is all zeros except for

q3 3  
= k (26)

The remaining four optical modes will be modeled by the same general

equation. The different values from Table I will be used in equations (15)

and (16).

V. SYSTEM OBSERVATION MATRIX:

The observation system will be represented by y = M x + v m"

The quantity y, is measured by the detector.

l= Xl x4  + V1  (17)

Observability requires that x6 also be measured

Y3= x6  + v3  (18)

The programs developed for the research (reference 14) also permitted

the measurement of x4

Y2 ='4 + v2  (19)

However, a knowledge of x4 did not improve the system performance

and the coefficients associated with this measurement were later set

to zero.

6



VI. OPTIMAL CONTROL SYSTEM DESIGN:

The classical infinite time optimal control problem minimizes a

cost function (Reference 8).

V= (x Q1x + u R1u) dt (20)

The minimization of V produces the control in terms of PI. the solution

to a Ricatti equation

PA + AtP P -P R 1  P + Q, = 0 (21)

(Kleinman's subroutine MRIC solves this equation.)

The optimal control is

u* = - R I- btP 1 (22)

The optimal control can be required to have a prescribed stability by

replacing A by (aU + A).

VII. KALMAN STATE ESTIMATOR:

If the basic plant is described by (reference 8)

x = A x + B u + v (23)

Y= M x + Vm (24)

The Kalman estimator is

x = A x + B u + ke (M x -) (25)- --e - - e

Desired control law

u = L x (26)

Actual control law

u = L x (27)

Defining

e = x - x (28)

yields a new system with doubled dimension

+ (29)

][ 0 A + ke M [1 +  ke

7



The matrix ke is the Kalman gain. It is given byt -1
ke = -P 2 M Rm  (30)

where k is the covariance of v
in -in
P2 (the covariance of e) is the solution to (Reference 8)

P2 A t + A P2 - P2 M t R 1 M P2 + Qn = 0 (31)
Q is the covariance of v

R is the covariance of v.

m -in
The input covariance for equation (29) is

-V - = Ervx vxt  Vxt + Vmt ke

Ev evl [x em - x -

Thus,

[ x e ] v =[Qn Qn Q = 12 (32)

IV x + ke -M Qn Qn + ke Rm ke
The (2,2) term can be further simplified by substituting equation (30).

k R kt P2Mt R -I R (RmIl)t M P2e m e 2  m m
= P2(Mt R -1 M) P2

Thus, the (2,2) term becomes

Q +ke R ket = Qn + P2 (M  m -I M) P2  (33)

The steady-state output covariance for the double dimension system

described by equation (29) is the solution of the linear variance equation

2t + 0 (34)A12 P12 +  12 A12 1I2 t

where P12 is the covariance of Ix e
t ]

A12 is the double dimension system matrix

Q12 is the input covariance from (32)

Kleinman (reference 10) modified the system described above by

including the effects of time delay in the observation system.

y (t) = M x (t - T) + v m (t - T) (35)

Given this observation model Kleinman obtains the following expression

for the covariance of x.

AT AAt T f At  t  A t t dt

e PeTfoe P 2M R MP 2ePx I

+ j e ~t e ATP2MtR7mM eAtT e At t dt
+ d (36)

where A = A + BL (term from (29))

(Kleinman's routine INTEG performs numerical integrations of this type).



VIII DETECTOR MODELS:

Martin (reference 11) presents this result for the variance of an upgraded

shearinR interferometer measurement

CT2 .I 7T 2 M2 C2 dO tFOV) 2  d)2

2 +1 ( )_

sin r 0 (37)

° s i n 'T a \ a od '/11 2

sin L FOV ( -L

where CDET = 4.17 x 10

M2 = number of sub-apertures

U d = 4 x 10-6 radians

aFOV = 2 x 10-5 M

is shown in Table III.0
Substituting values into equation (37) produces

2 - M2 f (38)
SI sin 2 [g/M]

With f and g from Table III equation (38) yields the results also shown in

Table III.

Table III. Values and Results for Detector Calculations

Small Medium Large
Target Target Target

VALUES

(SR) 10- 12 -0 60

a (radians) 1.13 x 10 3.57 x 10 1.13 x 10

f 2.42 x 10 3.11 x 10 6.96 x I0

g .653 .842 1.88

Results ( si -radians x 108)

M1 1 39.8 4.17 0.731

M = 2 301. 30.5 3.45

M = J-2 1549 155. 16.2

In all cases the aperture was modeled as a circular device. However,

the four sub-aperture case (M = 2) and the 12 sub-aperture case (M = -12)

assumed that the circular aperture was subdivided into square sub-apertures.

The results from Table III were used directly for v1 in the single

aperture case.

9



Now each detector can measure only tilt (mode x) and tip (mode y).

Thus, higher order modes must be estimated from tilt and tip measurements

made at the various sub-apertures. Furth r, if all the sub-aperture

measurements have the same noise behavior, then a least square estimate

is also a minimum variance estimate. This linear estimation procedure

was derived by seeking the sub-aperture measurements in terms of the

first five modes (reference 12). he following measurement model was used.

rq = H a + v' (39)

where

tilt(o)

tilt(2) overall tilt"

m = tilt(3) and a = overall tip

tilt(4) focus

tip(1) astig-1

tip(2) astig-2

tip(3)

tip(4)

v = sub-aperture noise vector-m

m = measurements at each sub-aperture

a = optical modes into the aperture

The expressions for H. . are

i1,j
H d{ j dA, 1<i<4 (40)

and H tf 4i dA, 4<i<8 (41)ui'j =A-- O j -

where Z. = mode j as a function of x and y. For a circle divided into

four 900 segments, the H matrix is

0 2k k k

1 0 -2k -k k

1 0 -2k -k -k

H 1 0 2k k -k (42)

0 1 2k -k k

0 1 2k -k -k

0 1 -2k k -k

0 1 -2k k k

where k 8/3n

10



Finally, the least square estimates are obtained from the sub-aperture

measurements of tip and tilt by

a e (Ht H)"I Ht m (43)-e -

The covariance of the least square estimates is (for four identical

detectors)
2 (t1so (HH) (44)

Thus, the variances for the estimations are

02 (tilt) = ai2/4 (45)

02 (tip) = 0.2/4 (46)1

a2 (focus) = .i2/32k 2 ) (47)
Y2 (astig-1) = c12/(8k2) (48)

02 (astig-2) = Fi2/(8k 2 ) (49)

where a.2 = variance of tilt and tip for each detector. The resulting1

sigmas for each mode and the various target sizes are shown in Table IV.

Table IV. Sigma (x 10-8) in Radians
Small Medium Large

Target Target Target

G(tilt) 151 15.2 1.73

o(tip) 151 15.2 1.73

o(focus) 62.8 6.34 .718

O(astig-l) 126. 12.7 1.44

o(astig-2) 126. 12.7 1.44

IX. RESULTS AND CONCLUSIONS:

Optimal Control Results

The Q and R1 matrices of equation 20 and alpha of equation 22

were selected to produce a closed loop system with a damped natural

frequency of about 500 Hz and a damping ratio of about 0.707. The

values used and the resulting three controllable eigenvalues are shown

in Table V.



Table V. Values and Results for Optimal Control

Tilt (& Tip) Focus Astig-1 Astig-2*

Ql(1,1) .145x1010  .2x109  .145xI0 10  .13x10'0

Q1(5,5) 121 95.5 121 119

Q1(6,6) .139x10 17  .89x10 16  .139x10 17  .135x10 10

RI'I .125x10 6  .6xlO6  .125x10 6  .143x10 6

Alpha 45 90 40 21.1

Real Eigenvalue -4383 -7825 -4367 -4460

Complex -2215 -2220 -2215 -2222

Eigenvalues ±j2218 ±j2220 ±j2218 ±j2218

NOTE: Q1 (4,4) = Q (IO ) = -QI(1,4), -Q1(4,1)

Eigenvalues in per second

*For approximate 3 pole model

Kalman Filter Results

The steady-staLe Kalman filter was used to estimate the states of

the turbulence model. As discussed in Section V observability requires

that state x6 (the integral of x1 - x4) be measured. So, in lieu of

attempting to establish one sigma for x6, the sigma for x6 was varied.

The computer programs presented in reference 14 were modified slightly

to solve the expression of equation (36) and to calculate a variance

reduction ratio for each set of input data.

The results of this research are shown in the graphs of Figures

2 through 7. The graphs of Figures 2 thorugh 4 present the results for

one and four sub-apertures and for the three different target sizes

with no time delay. The graphs of Figures 5 through 7 present the same

results for a time delay of one millisecond.

These graphs reveal that if the variance of the integral of the

error is small enough, then four sub-apertures provide a smaller normalized

phase variance than does a single aperture.

Optical Detector Assumptions

1. CDET = 4.17 X 10- 4

2. A quarter circle can be modeled by a square with the same area.

(assumed for the four sub-aperture case)

12



Control System Assumptions

1. The mirror dynamics permit a damped natural frequency of 500 Hz

with a damping factor of 0.707.

2. The modes are not coupled.

3. The time delay can be modeled by

Y(t) = M x (t-T) + Vm(t-T) (35)

13
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